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Overview & Synthesis

Digital Twins for Biomedical 
Research & Health Sciences
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Digital Twin
A good definition

• “A digital twin couples computational 
models with a physical counterpart to 
create a system that is dynamically 
updated through bidirectional data flows 
as conditions change.” [NASEM] 

• “A digital twin is a virtual representation of an object 
or system designed to accurately reflect a physical 
object.” [IBM] 

• “A digital twin is an integrated data-driven virtual 
representation of real-world entities and processes, 
with synchronized interaction at a specified 
frequency and fidelity.” [DT consortium]
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models with a physical counterpart to 
create a system that is dynamically 
updated through bidirectional data flows 
as conditions change.” [NASEM] 
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See Lecture #2
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Myths
Hype …

• You can “twin” anything!

• But: 

• Not transferable.  

• Not certifiable. 

• High costs. 

• High complexity. 

• Deployment is hard.
4



Dreams
Digital Twin of a Cancer Patient and Tumor
This example of a digital twin demonstrates the dynamic bidirectional interaction between the real world patient 
and digital twin to inform clinical decisions regarding interventions including treatments and clinical assessments, 
which in turn informs the digital twin.

The virtual representation comprised of models 
describing temporal and spatial characteristics 
of the patient and tumor with dynamic updates 
using data from the real world patient.

The patient and the tumor from which
data is gathered using various clinical
assessments to inform the digital twin.

Simulations of potential treatments 
can generate predictions of 
outcome and in turn can be 
optimized to determine the most 
favorable treatment options.

Utilizing the simulated predictions 
and related uncertainties, the
clinician and patient can make 
informed clinical-decisions around
treatment and also the clinical 
assessments, which affect the data
informing the digital twin.

As the patient and tumor are 
constantly evolving and the 
data collection can also change 
over time, VVUQ must occur 
continually for digital twins.

Uncertainty quantification 
needs to be addressed for all 
aspects of the digital twin, 
including the patient’s data, 
modeling and simulation, and 
decision making.

VVUQ
Verification, validation,
and uncertainty quantification

Simulations & predictions

Data are collected in many ways:
Clinical assessments

Imaging Lab tests

Biosensors Patient reported
outcomes

Clinical
assessments

Tissue specimens,
including genomics
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Models spanning a range of fidelities
and resolutions may be utilized and 
potentially integrated together.

As new observed data are acquired,
the data are assimilated and the models 
are calibrated, updated, and estimated.

Modeling
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This information is from Foundational Research Gaps and Future Directions for 
Digital Twins available online at www.nationalacademies.org/digital-twins.
Copyright by the National Academy of Sciences. All rights reserved.

See NASEM Report (2024)

• Destination  
Earth

• Smart Cities

• Personalized medicine
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Reality
Present and future

• Mathematics of Inverse Problems and DA - see next lecture.

• Scientific Machine Learning - blending science with data.

• Generative AI… - the real game-changer? 
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ML and SciML
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Finding a pattern.

ML/AI in a Nutshell

<latexit sha1_base64="4w6LAd3UO+eR5rpH5lR1dkmxmus=">AAACMHicdVBNTxsxEJ3lqxC+AlyQuFhESJyiXYSgR9ReegSJABKJIq8zm7Xwx8qehUYr+mt6bQ/9NeWEeu2vwJvkAEE8ydLzezP2zEsLJT3F8VM0N7+wuPRpeaWxura+sdnc2r7ytnQCO8Iq625S7lFJgx2SpPCmcMh1qvA6vfta+9f36Ly05pJGBfY0HxqZScEpSP3mbsa69SuGfWddJ4c5cefsAxv1m624HY/B3pNkSlowxXl/K4LuwIpSoyGhuPe3SVxQr+KOpFD42OiWHgsu7vgQbwM1XKPvVeMVHtlBUAYssy4cQ2ysvu6ouPZ+pNNQqTnlftarxY88ynX43eAD5Wgd6qoWqsvJZWYuyj73KmmKktCIyVhZqRhZVqfHBtKhIDUKhAsnw2ZM5NxxQSHjRsgsmU3oPbk6aicn7ZOL49bZl2l6y7AH+3AICZzCGXyDc+iAgB/wE37B7+hP9Dd6jv5NSueiac8OvEH0/wUhJalm</latexit>

f : x ! y

• Input 

• Features 

• Parameters 

• Causes

• Output 

• Observations 

• Outcomes 

• Effects
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How is this done?

ML/AI in a Nutshell

FCNN - architecture

input
layer

hidden layers
output
layer

8/49
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How is this done?

1. Suppose the ML/AI model depends on parameters, .θ

2. Define a loss function  that measures the difference 
between model predictions and measured observations.

ℒ

3. Find the optimal parameters that minimize the loss 
function.

• This is exactly how we solve an inverse problem.

• Inverse problems are at the core of Digital Twins.

ML/AI in a Nutshell

FCNN - architecture

input
layer

hidden layers
output
layer

8/49
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Blending data and science

Scientific Machine Learning

• ML/AI is 100% data-driven. 

• ML/AI produces black boxes. 

• There is NO guarantee that the results are 
scientifically valid. 

• SciML seeks to blend science with ML/AI. 

• There are many, many techniques for this… 
Research is ongoing.
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Blending physics-based and ML models

Scientific Machine Learning

11

• PINN and variants, based on autograd. 

• Operator learning. 

• Feature engineering. 

• Layer engineering. 

• Bayesian neural networks. 

• Gaussian process regression. 

• Generative models (LLMs).



Trust

Why does AI/ML need science?

• Data-driven black-box methods do fail:  

• 1. Output is physically inconsistent.  

• 2. ML methods/algorithms can (and do) easily learn spurious (local) 
relationships that look very good on training and test data.  

• 3. ML cannot distinguish between correlation (what?) and causation (why?). 

• This leads to: 

• 1. Poor generalization.  

• 2. Lack of Interpretability.  

• 3. Lack of trustworthiness and certifiability.
12



Digital Twins
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Where do we stand?

Digital Twins in biomedical research and health sciences

• Lots of data. 

• Credible process-level and organ-level 
twins exist already. 

• Need to integrate these into a system-
of-systems. 

• Digital Human will then become 
possible, thanks to Exascale HPC—no 
longer sci-fi integration
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Many, many, many…

Examples

• Omics: proteomics, metabolomics, 
transcriptomics, multi-omics. 

• Genomics. 

• Imaging, radiomics. 

• Hospital management. 

• Surgery scenario modelling.

Li, R. et al. Machine learning meets omics: Applications and perspectives,  
Briefings in Bioinformatics, 2022. 15



The next frontier!

LLMs for Health Sciences

• What is an LLM? 

• How can LLMs become domain-specific? 

• Examples in biomedical and health sciences.
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Components

Large Language Model
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Specialization—RAG

Large Language Model
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Med-Gemini-Google

LLM for Health
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 https://arxiv.org/pdf/2404.18416v2 (29 April 2024)

• Family of multimodal models built 
upon Gemini specifically designed 
for the healthcare industry. 

• “Groundbreaking Family of AI 
Models Revolutionizing Medical 
Diagnosis and Clinical Reasoning” 

• Models excel in multimodal tasks, 
with substantial improvements in 
analyzing medical images and 
videos and accurately retrieving 
information from long health 
records.

https://arxiv.org/pdf/2404.18416v2


Med-Gemini-Google

LLM for Health
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• Family of multimodal models built 
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for the healthcare industry. 

• “Groundbreaking Family of AI 
Models Revolutionizing Medical 
Diagnosis and Clinical Reasoning” 

• Models excel in multimodal tasks, 
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Protein structure

AlphaFold
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AlphaFold is not an LLM, but it uses related transformer technology. You can think of it as a specialized 
geometric transformer for biology.



Ethics and Trust
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DEFINITIONS
ETHICS, BIAS, RESPONSIBILITY, TRUST

• ETHICS = what is morally good or 
bad, right or wrong? (norms) 

• BIAS = prejudice against a person, 
object, position. 

• TRUST = willingness to assume risk 
by relying on, or believing in, the 
actions of another party 

• TRUSTWORTHY AI should be lawful, 
ethical, unbiased.
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DEFINITIONS
EXPLAINABILTY & INTERPRETABILITY

• INTERPRETABLE AI = can be 
understood, line-by-line, without 
additional explanation = permits a 
decision of trust = not a black box 

• EXPLAINABLE AI = can be explained 
post hoc, after training, in a way that 
makes it understandable = 
transparency in black boxes = feature 
importance, effects, interactions
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TRAINING, MODELS, SOCIETY
HOW CAN AI GO WRONG?

• Training data issues: 

• Non-representative, lack of geodiversity. 

• Faulty, biased training labels. 

• Adversarial effects. 

• AI model issues: 

• Learn faulty strategies. 

• Fake something plausible. 

• Non-trustworthy, lack of robustness.

• Societal issues: 

• Lack of consent on data collection. 

• Disenfranchise scientists. 

• CO2 emissions. 

• Globally applicable AI approaches may 
stymie burgeoning efforts in developing 
countries.  

25



Conclusions
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• Digital twins are here to stay and have enormous potential. 

• Generative AI is a game changer, but  

• Mathematical modelling is necessary to ensure reliability and trust. 

• Computational-CPU, code & data- efficiency is essential for precision & 
sustainability. 

• Ethical concerns should be addressed systematically.  

• There’s a lot of exciting work & research to be done here!
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Where do we stand?
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LARGE LANGUAGE MODELS

• Small number of very large, 
intelligent LLMs 

• Many smaller, specialized LLMs 

• Healthcare, legal, finance, etc. 

• Personal LLMs (your “story”) 

• Uses in education: 

• How to educate?  

• What to teach?

Tomorrow?

[J. Clusmann, et al. Nature Comm. Medecine, 2023]29



Where are we heading?

The future of scientific research?

• Superintelligence platforms and 
autonomous labs for life, chemical, and 
materials sciences (eg. LILA = $1.3bn) 

• Research AI agents to execute 
complete workflows. Eg. agent that can 
explore all research on a given subject, 
aggregate millions of texts, filter data 
based on a persona, and find patterns 
and themes that you can act on.
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Thank You!
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Contact:

• mark.asch@u-picardie.fr   

• https://www.linkedin.com/in/mark-asch-8a257130/  

• https://github.com/markasch 

• https://markasch.github.io/DT-tbx-v1/
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