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Digital Twin: definition

Definition: A digital twin can be defined as a computational
model (or a set of models) that evolves over time to represent
the structure and behaviour of a corresponding physical asset,
by exchanging bi-directional data with it.
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Mathematics

[nverse Problems for DT's
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Inverse Problems - Deterministic Case

In the deterministic case (n = 0), because of the ill-posedness of the inverse
problem, we replace it by the least-squares optimization problem,

1
argniin > [ly — G(u) [}

ueX

that is usually regularized as

o1 1
axguiin (1= G + 5 u = mal )
uek

for a given reference point mg € E, with E, X, Y Banach spaces. The
optimization requires a gradient (or adjoint).
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for a given reference point mg € E, with E, X, Y Banach spaces. The
optimization requires a gradient (or adjoint).

In reality, we have uncertainty (noise)

¢ in the model,
¢ in the parameters,
® in the observations.

The dynamical system becomes

y = G(u) +n,
where n ~ N (0, X).
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: . . Inverse Problems - Stochastic Case
In reality, we have uncertainty (noise)

¢ in the model,
¢ in the parameters,
® in the observations.

The dynamical system becomes

In the stochastic case, the solution of the inverse problem, “find u from y.” is
a posterior probability density function (ppdf).

Theorem (Bayes)
y =G(u) +n,

p(y|u)p(u)
p(y)

p(uly) =

Y

where n ~ N (0, X).

p(parameter|data) o< p(data|parameter)p(parameter).
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3. Find the optimal parameters 8* of the ML model that
mMminimize the loss function.
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- Scientific ML will improve certifiability—see below.
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nverse Proplems

Deterministic

e |nverse Problem is defined as:

= Given observations/measurements of u at the loca-
e Given a physical relation tions x = {x;}

F(u;0) =0 (2)

represented by an IBVP, or other functional relationship,

with — Estimate the parameters @ by minimizing a

loss/objective/cost function

— u the physical quantity ;
= 0 the (material /medium) properties/parameters L(0) = [Ju(x) — uObSH2

subject to (2).






WHAT IS SCIENTIFIC ML?
TWO WORLDS UNITED

DATA SOURCE
(SciML) is a

field of research that combines
traditional scientific modeling with
machine learning techniques. It aims to
develop new methods and tools for
solving scientific problems that are
more accurate, efficient, and
generalizable than traditional methods.

llllllllllllllllllllll
* ¢

PHYSICS BASED é]

MODELS

MACHINE LEARNING
MODELS @

...................... MODEL OUTPUTS




WHAT IS SCIENTIFIC ML?

- SciML should exploit any available,

underlying physical knowledge/principles:
- Laws, equations.

- Conserved quantities.

- Symmetries, etc.

Improves interpretability and certifiability—no
more black boxes!

Reduces needs for vast amounts of training
data.

Assists in DL network design (theory-inspired).

Incorporates ML models into physical plants/
devices.

BLENDING

Scientific Machine Learning is model-based data-efficient machine learning

- A, S s e = ~n hath eAatirane Anf bna A PR
low do we simultaneou ‘H use poth sources or Knowiedage?’

Predictions

[C. Rackaukas]




Scientific Machine Learning - relation with DTs

e ML and DTs are essentially problems, where a loss/mismatch function is
minimised.
e This is just a norm of the difference between model output and measured data.

e |t generates very ill-posed problems (very high dimensional, noisy, etc.).

e But, ML does it extremely well (optimisation + regularisation) with amazing tools.

o , methods
° IS equivalent to a classical adjoint method.
° (don’t try to minimise over all the variables at once), (UQ).

e Q: Does the ML solution respect the physics?
e A: Use SciML!

13




ScIML-Theory

e Hard constraint: solve the contrained optimization prob-
lem

m@in L(u) s.t.

where
e Recall: there are two possible optimization strategies for

constraining the NN (ML) to respect the physics = L(u) is the data (mismatch) loss term

= JF is the constraint on the residual of the (P)DE
under consideration

= as was amply discussed in the DA/inverse problem
context, this type of (P)DE-constrained optimization
is usually quite ditficult to code and to solve

1. Hard constraints
2. Soft constraints

e Suppose we have a (P)DE of the form

Flu(x,1) =0, xeQCR:L te0,T],

e Soft constraint: solve the regularized /penalized uncon-
trained optimization problem

where

m@in L(u) + arF(u), (3)

JF is a differential operator representing the (P)DE
u(x, t) is the state variable (i.e., quantity of interest),
with x,t) the space-time variables

T" is the time horizon and ) is the spatial domain
(empty for ODEs)

initial and boundary conditions must be added for the
problem to be well-posed

L(u) =Ly, + Ly,

where

= Ly, represents the misfit of the NN predictions

= L, represents the misfit of the initial /boundary con-
ditions

— 0 represents the NN parameters

— «aF is a regularization parameter that controls the
empbhasis on the PDE-based residual (which we ideally
want to be zero)




THE MATH BEHIND SCI-ML
APPROXIMATION THEORY

* Multi-layer perceptrons - 1950’s - the
basis.

R

* Universal Approximation Property -
1990’s - the theory.

Theorem 1 (Cybenko 1989). If o is any continuous sigmoidal function, then
finite sums

Glx)= Zozja(wj b7

are dense in C(Iyg).

e Differentiable programming - 2020’'s - Theorem 2 (Pinkus 1999). Letm; € Z%, i =1,...,s, and set m = max; ‘mz‘ .
Suppose that o € C"™(R), not polynomial. Then the space of single hidden layer

makes it all possible! (see next slide) Rl

M(c) =span{c(w -x+b): w € RY, ble R},
is dense in C™ ™ (R%) = ns_, C™ (RY).
15




» Differentiable programming - 2020°s

- makes it all possible!
Based on:

* Computational graphs

 Chain-rule for differentiation

THE CODE BEHIND SCI-ML
“AUTOGRAD”

16

Backward propagation

Purple: local gradients

Red: back-propagated gradients
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PINN

For any ODE/PDE

(Deep)
- Neural
Network

|—> Autograd




PINN Example

Example: IBVP for Diffusion Equation

Compute u(x,t): Q x [0,T] — R such that

ou(x,t)
ot

V- (AMx)Vu(x,t)) = f(x,t) in Q x (0,T),
(6)
u(x,t) = gp(x,t) on 0Qp x (0,T),
—AMx)Vu(x,t) -n = ggr(x,t) on 0Qr x (0,T),
u(x,0) = up(x) for x € Q.

Note that A(x) is, in general, a tensor (matrix) with
elements \;;.

e Direct problem: given A\, compute w.

e Inverse problem: given u, compute .

PINN for the Diffusion Equation

[Credit: Lu, Karniadakis, SIAM Review, 2021]

e Use FCNN to approximate u at the selected points x,
with training data at residual points 7¢ and 7Ty

e Use AD to compute derivatives for the PDE and the
boundary/initial conditions

e Minimize the augmented, weighted loss function




HOW IS SCIENTIFIC ML DONE?
BLENDING

s p

5 £ Known Closure Laws
3 possible paths: ~ ™ » Vo =fu (X0, X2 X3, X) o~ ™
(a) (X1, X2, X3, ..., Xy ODE & PDE Solutions [Yy, Vs,Ys, .., Y, ]
° ° a . L .
T P h ySICS-gUl d e d NNs Input features e.8. Burger's Equation Output features
ou ou 9%u
N y : ac T Por e A Y

\ Sensor-based Physical Observations /

Feed Forward Propagation

Y=f (X; 0)

O € O
O jit-c ) O @ O
| ST A R AR )
‘.:11 » OC)OOO Data Loss (L) = L; Loss or MSE <¢€
@ OC )O @ O Loss, etc. . L
@/ KNGO
Input ® <D O Output
Layer Layer > &
4 !
Hidden Layers M
4 . o : )
Minimize the loss through an optimization technique
Update 0 (weight and biase
L p (weig s) )
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3 possible paths:

2. Physics-informed NNs

HOW IS SCIENTIFIC ML DONE?
BLENDING

x‘.j'
t“'i~

Input
Layer
A

-

e esc0o0e

S

eceooo0e

|
Hidden Layers

o
.

Output
Layer

PR S VAN

ojejer

X ,
d .
: » . »
o X
/ .

Ju
ot

u
dx

. o™ u

axn

Automatic
Differentiation

Lpata = u |.(2 _uIData
Lic=ulg:, — Ulap,
Lpec = (0,U|gn —0qu|an) + (U |50 — Ulsn)

( ‘LPDE — f (ft ,(3tﬁ s axﬂ ..... )) \

Total loss function:

KL =W;Lic+ WpLpgc +WaLpata +WpLppg J

(

Prediction completed

\_

~

(

Minimize the loss through an optimization technique

.

Update 6 (weight and biases) and /. (differential equation parameters)




SciML - PINN - Blending

NN output
ot L e N , Loss function

L 'l Physics Informed Network

NN input

Labeled Data:

Boundary / Initial Conditions:

Residual on PDE Equations:

[S. Cuomo, et al]

Feedback Mechanism

Optimization

21



HOW IS SCIENTIFIC ML DONE?
BLENDING

3 possible paths:

Optional Physics  |== === == === ------------c-scss=====
Convolutional Layer

Convolutional Layer

Sox W,

‘ , 18U,
Modified X = X, Convolutional Layer ‘ “"“)luluinfl Laver +/)
Six W,
L Convolutional Layer
3. Physics-encoded NNs S
\\ [ [dentity J
\ 7
\ //
\\ , ,
\ Recurrent /
\ ’
\ ’
\ ’
4 ) 4 N Y~ ) ~ N
X — [X]_r XZ; X3r ess ) Xn] E—— Convolutional Layers — MOdlﬁed X = XO Y' = [Y’]_; Y’Z' Y'3: ann ) Y,Tl]
Input Features Predicted Outputs
\ J \ v \ \_ )
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Examples & Applications



Domains in biomedical sciences

- Epidemiology + COVID,
« Anthrax,
« OmMics
. HIV
. Medicine . Zika,

: - Smallpox,

- Drug design

« Tuberculosis,
« Pneumonia,
- Ebolq,

- Dengue,

- Polio,

. Measles.
24



Epidemiology with Scientific machine learning

ML can be employed to study complex interactions between different biological systems, such as
signaling pathways and metabolic networks, to advance our understanding of various biological
ohenomena and improve the diagnosis and treatment of diseases. These technologies have the

notential to significantly impact biological research in a variety of areas, including infectious diseases
and epidemiology.

ML can be used to analyze large datasets, such as genomic data, to identity patterns and trends
relevant to the understanding and treatment of infectious diseases

ML can be employed to predict the likelihood of certain outcomes, such as the spread of a disease,
nased on historical data and by analyzing datasets generated by epidemiological studies. This can aid
epidemiologists in preventing or mitigating outbreaks of infectious diseases, such as influenza and HIV.

Al-based DTs can also be utilized to build predictive models that help researchers understand the
relationships between different variables, such as gene expression and disease risk, interactions betwes

nathogens and host organisms at the molecular level, and complex molecular interactions within 2
niomolecules.




Other Scientific Domains

. Fluid dynamics, flow problems

- Oceanography

- Meteorology

.« Geophysical flows
- Aerodynamics

- Solid mechanics

- Material science
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DISEASE DIAGNOSIS
PATTERN MATCHING

* ML algorithms, such as support vector
machines (SVM) and random forests
(RF), are trained on medical imaging
data, such as X-rays or MRIs, to identify
patterns associated with specific
diseases.

For example, a SVM model could be
trained on a dataset of mammogram
images labeled as "normal" or
"cancerous" to create a computer-aided
detection system for breast cancer.

CNN's have exceptional pattern-
recognition capabilities.

Datasets

BreakHis

%A:.‘:?TT_ ¢. "' \‘ Do ‘
§ 4 e, & A
A R 3 : 3

s N . '."‘- g

¥ e . .S
’ At S B "
L y d -7 -
. .
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Preprocessing
Image Enhancement

AN
L

3 /5
) [ S

7

Segmentation
k-means Clustening

\\.- '%T‘\ ’" :;‘ E
» -~y .. <”
© & . g

Integrated Feature Extraction
Texture Features
Geometne Features
Color Features

!

Classification Comparison Module
Support Vector Machine (SVM)
A-Nearest Neighbour (£-NN)
Random Forest (RF)

Artificial Neural Network (ANN)

Performance Evaluation and Statistical Analysis
Integrated SVM Model gives results that are
significantly better (Accuracy = 90%)

nt




DRUG DISCOVERY

GRAPHS AND PROPERTIES

* ML is used to analyze large datasets of
chemical compounds and their properties
to predict which ones are likely to make
effective drugs.

For example, a deep learning model called

a graph convolutional network (GCN) can
be used to learn the structural features of
molecules and predict their biological
activity.

CANDLE project solves large-scale machine

learning problems for three cancer-related
pilot applications: the drug response
problem, RAS pathway problem, and

treatment strategy problem (disease-drug) .

~1.Hidden Markov model
\ 2 Hierarchial clustering
3.K-means

- 4 Neural Networks

Unsupervised

(DAENSs and autoencoders)

P

" 1.De novo molecular design \
2.Deep feature selection for biomarkers

3.Feature reduction in single-cell data to identify

cell types
4 Cell types and biomarkers from single —cell RNA
o Y

Learning

o
1.NLP Kernel methods. ;-13’90‘:‘:‘@9;:{;‘9 ga’“‘::a“msPK ,
e cor | 2Taget drug a sed on PK properties
Gaipenianad protein structure or sequence
. SOVH 3Tissue specific biomarkers from  gene
Supervised 4 Nearest Neighbor expression signatures

Learning

4

1.Random Forests
2.Linear regression.
3.Decision Trees

4 Sparse linear regression

A

1.Molecular features that predict cancer drug response.
2.Tagets for Huntington disease

3.Disease and target drug ability from multi-dimensional
data.

4 Gene expression data that predict clinical trial success




PERSONALIZED MEDECINE
LETS GET PERSONAL

* Machine learning algorithms used to
analyze patients' genetic data and
other health information to develop
personalized treatment plans.

* For example, a decision tree model
could be trained on a dataset of
patients with similar characteristics to
predict which medication will be most
effective for a given patient.

* Moving towards a Digital Twin...

30

Digital Twin of a Cancer Patient and Tumor

This example of a digital twin demonstrates the dynamic bidirectional interaction between the real world patient
and digital twin to inform clinical decisions regarding interventions including treatments and clinical assessments,
which in turn informs the digital twin.

REAL WORLD PATIENT

The patient and the tumor from which
data is gathered using various clinical
assessments to inform the digital twin.

Clinical assessments
Data are collected in many ways:

<\
=l
il

VWuQ =—-=p

Verification, validation,
and uncertainty quantification

As the patient and tumor are Clinical Tissue specimens,
constantly evolving and the assessments including genomics
data collection can also change
over time, VVUQ must occur
continually for digital twins. é%@
%@@

Uncertainty quantification \7 /
needs to be addressed for all Biosensors Patient reported
aspects of the digital twin, outcomes
including the patient’s data,
modeling and simulation, and
decision making.

Human and digital

twin interaction

Utilizing the simulated predictions
and related uncertainties, the
clinician and patient can make
informed clinical-decisions around
treatment and also the clinical
assessments, which affect the data
informing the digital twin.

DIGITAL TWIN

The virtual representation comprised of models
describing temporal and spatial characteristics
of the patient and tumor with dynamic updates
using data from the real world patient.

\ .7

A P
A\ ‘, i 3

-\ = A

A N - —
/ e ; !’é; -
] <, )
Vi I S
b —asVzavar,, —Viaures - Za

Q SO%

Modeling

Models spanning a range of fidelities
and resolutions may be utilized and
potentially integrated together.

Simulations & predictions

Simulations of potential treatments
can generate predictions of
As new observed data are acquired, outcome and in turn can be

the data are assimilated and the models

optimized to determine the most

are calibrated, updated, and estimated. o°® ’:«_‘. Y favorable treatment options.
MODELING = g
ﬁ-ﬂ’
This information is from Foundational Research Gaps and Future Directions for N ATIO N AL Sciences
1 - Digital Twins available online at www.nationalacademies.org/digital-twins. Engineering
Copyright by the National Academy of Sciences. All rights reserved. ACADEMIES wedicine




HOSPITAL PLANNING

ADMISSIONS AND READMISSIONS

* ML models, such as logistic regression

and artificial neural networks, can be
used to analyze patients' electronic
health records (EHR) to identify
factors that increase the risk of
readmission.

This information can then be used to
develop interventions to reduce
readmissions.

Time-series (LSTM) and queuing
theory to model admissions fluxes.

76 patients in ED now, stratified ML estimated probability number of admissions

by which ML model s applicable \ f of admission, P{Adm)

oo | : s 3
nel i@ : ;G : -
S : : i B
o R 2 - : : el Dl eee
oo S HINE N ; R @™
1500 1 : el et Same
real-time | 328 Zosis  (BENERYY
patient 0] <22 & . O®:
data o BT IR i @0

e Rigoe W K
bt oe e v r~

. \ [ among patients in ED now

020400
probakil

minutes since arrival in ED minutes since arriva lin ED number of admissions
d - I e
/ probability of sdmission within prediction rumber of admissions in next 4 hours
window of 4 hours for each patient in ED ' [ among patients in ED now
now
probabiity

probateiny

p ’
) S L patemin€ofor Atows  TDYIN
p has prob of admisson
. i within window A-fi »
recent dota on tirme

to admission PlAdm] x (PP 11-2,)

howrs since armval to ED

number of admissions

F & number of admissions In next 4 lll / total number of admissions within

probabily

L 3

recent dota on number of
admissions

hours among patients yet to armve \ { prediction window of 4 hours
probabikty
\




Conclusion
SciML for DTs

. Incorporating scientific knowledge
(almost) always improves the
oerformance of ML algorithms:

. Restricts the space of ML models.
. Stronger inductive bias.

- Can alleviate ML flaws (poor
generalisation, optimisation difficulties,
lack of interpretability, large amounts of
training data).
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