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Digital Twin
A mathematical 
 definition

• “A digital twin couples 
computational models 
with a physical 
counterpart to create a 
system that is dynamically 
updated through 
bidirectional data flows as 
conditions change.” 
[NASEM]
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Digital Twin: definition 

Definition: A digital twin can be defined as a computational 
model (or a set of models) that evolves over time to represent 
the structure and behaviour of a corresponding physical asset, 
by exchanging bi-directional data with it. 

REAL
WORLD

DIRECT

INVERSE

REAL
WORLD

DATA-
DRIVEN

MODEL-
BASED

Challenge: For a given context, what is the best 
combination/synergy between data-driven/ML 
and model-based approaches? 

SciML
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Mathematics
Inverse Problems for DTs

Direct and Inverse Problems

Dynamical System
du
dt = g(t, u;✓), u(t0) = u0,

with g known, ✓ 2 ⇥, u(t) 2 Rk
.

Direct: Given ✓, u0, find u(t) for
t � t0.

Inverse: Given u(t) for t � t0, find
✓ 2 ⇥.

4
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Inverse Problems - Deterministic Case

In the deterministic case (⌘ = 0), because of the ill-posedness of the inverse
problem, we replace it by the least-squares optimization problem,

argmin
u2X

1

2
ky � G(u)k2Y

that is usually regularized as

argmin
u2E

1

2

✓
ky � G(u)k2Y +

1

2
ku�m0k2E

◆

for a given reference pointm0 2 E, with E, X, Y Banach spaces. The
optimization requires a gradient (or adjoint).
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Deterministic and Stochastic Problems

In reality, we have uncertainty (noise)
• in the model,
• in the parameters,
• in the observations.

The dynamical system becomes

y = G(u) + ⌘,

where ⌘ ⇠ N (0,⌃).
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6Inverse Problems - Stochastic Case

In the stochastic case, the solution of the inverse problem, “find u from y,” is
a posterior probability density function (ppdf).

Theorem (Bayes)

p(u|y) = p(y|u)p(u)
p(y)

,

or
p(parameter|data) / p(data|parameter)p(parameter).
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Finding a pattern.

ML/AI in a Nutshell

<latexit sha1_base64="4w6LAd3UO+eR5rpH5lR1dkmxmus=">AAACMHicdVBNTxsxEJ3lqxC+AlyQuFhESJyiXYSgR9ReegSJABKJIq8zm7Xwx8qehUYr+mt6bQ/9NeWEeu2vwJvkAEE8ydLzezP2zEsLJT3F8VM0N7+wuPRpeaWxura+sdnc2r7ytnQCO8Iq625S7lFJgx2SpPCmcMh1qvA6vfta+9f36Ly05pJGBfY0HxqZScEpSP3mbsa69SuGfWddJ4c5cefsAxv1m624HY/B3pNkSlowxXl/K4LuwIpSoyGhuPe3SVxQr+KOpFD42OiWHgsu7vgQbwM1XKPvVeMVHtlBUAYssy4cQ2ysvu6ouPZ+pNNQqTnlftarxY88ynX43eAD5Wgd6qoWqsvJZWYuyj73KmmKktCIyVhZqRhZVqfHBtKhIDUKhAsnw2ZM5NxxQSHjRsgsmU3oPbk6aicn7ZOL49bZl2l6y7AH+3AICZzCGXyDc+iAgB/wE37B7+hP9Dd6jv5NSueiac8OvEH0/wUhJalm</latexit>

f : x ! y

• Input 

• Features 

• Parameters 

• Causes

• Output 

• Observations 

• Outcomes 

• Effects
6



How is this done?

ML/AI in a Nutshell

FCNN - architecture

input
layer

hidden layers
output
layer

8/49
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Classes

Inverse Problems

• Linear - Nonlinear 

• Deterministic - Statistical 

• Static - Dynamic 

• Well-posed - Ill-posed

8



Deterministic

Inverse Problems

9

Physics Constrained Learning - PCL

- Idea: use a NN as part of the (P)DE

• Given a physical relation

F (u;✓) = 0 (2)

represented by an IBVP, or other functional relationship,
with

) u the physical quantity
) ✓ the (material/medium) properties/parameters

• Inverse Problem is defined as:

) Given observations/measurements of u at the loca-
tions x = {xi}

uobs = {u(xi)}i2I

SciML - PINN and co. 60
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) Estimate the parameters ✓ by minimizing a
loss/objective/cost function

L(✓) =
��u(x) � uobs

��2

2

subject to (2).

SciML - PINN and co. 61



Statistical (Stochastic)

Inverse Problems

• Idea: reformulate inverse problems as problems of 
statistical inference by means of Bayesian statistics. 

• All quantities and parameters are modeled as 
random variables.  

• Ill-posed IP becomes well-posed in this setting! 

• From the perspective of statistical inversion theory, the 
solution to an inverse problem is the probability 
distribution of the quantity of interest when all 
information available has been incorporated in the 
model.  

• This distribution, the posterior distribution, describes 
the degree of confidence about the quantity of 
interest, after the measurement has been performed. 

10

f(parameter ∣ data) ∝ f(data ∣ parameter) f(parameter)



TWO WORLDS UNITED
WHAT IS SCIENTIFIC ML?

Scientific Machine Learning (SciML) is a 
field of research that combines 
traditional scientific modeling with 
machine learning techniques. It aims to 
develop new methods and tools for 
solving scientific problems that are 
more accurate, efficient, and 
generalizable than traditional methods. 

11



BLENDING
WHAT IS SCIENTIFIC ML?

12

[C. Rackaukas]

• SciML should exploit any available, 
underlying physical knowledge/principles: 

• Laws, equations. 

• Conserved quantities. 

• Symmetries, etc. 

• Improves interpretability and certifiability—no 
more black boxes! 

• Reduces needs for vast amounts of  training 
data. 

• Assists in DL network design (theory-inspired). 

• Incorporates ML models into physical plants/
devices.



Scientific Machine Learning - relation with DTs 

• ML and DTs are essentially optimization problems, where a loss/mismatch function is 
minimised.  
• This is just a norm of the difference between model output and measured data. 

• It generates very ill-posed problems (very high dimensional, noisy, etc.).  

• But, ML does it extremely well (optimisation + regularisation) with amazing tools. 
• Neural networks, Stochastic gradient methods 
• Back propagation  is equivalent to a classical adjoint method. 
• Mini-batches (don’t try to minimise over all the variables at once), dropout (UQ). 

• Q: Does the ML solution respect the physics?  
• A: Use SciML!

13



SciML-Theory

14

SciML - hard vs. soft constraint

SciML - PINN and co. 72

• Recall: there are two possible optimization strategies for
 constraining the NN (ML) to respect the physics

1. Hard constraints
2. Soft constraints

• Suppose we have a (P)DE of the form

F(u(x, t)) = 0, x ⇤ � � Rd, t ⇤ [0, T ] ,

where

⇥ F is a di�erential operator representing the (P)DE 
⇥ u(x, t) is the state variable (i.e., quantity of interest),
 with x, t) the space-time variables
⇥ T is the time horizon and � is the spatial domain
 (empty for ODEs)
⇥ initial and boundary conditions must be added for the

problem to be well-posed

• Hard constraint: solve the contrained optimization prob-
lem

min
✓

L(u) s.t. F(u) = 0,

where

) L(u) is the data (mismatch) loss term
) F is the constraint on the residual of the (P)DE

under consideration
) as was amply discussed in the DA/inverse problem

context, this type of (P)DE-constrained optimization
is usually quite difficult to code and to solve

• Soft constraint: solve the regularized/penalized uncon-
trained optimization problem

min
✓

L(u) + ↵FF(u), (3)

L(u) = Lu0 + Lub
,

where

) Lu0 represents the misfit of the NN predictions
) Lub

represents the misfit of the initial/boundary con-
ditions

SciML - PINN and co. 73
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SciML - PINN and co. 73) ✓ represents the NN parameters
) ↵F is a regularization parameter that controls the

emphasis on the PDE-based residual (which we ideally
want to be zero)

• Finally, we use ML methods (stochastic optimization,
etc.) to train the NN model to minimize the loss.

SciML - PINN and co. 74



APPROXIMATION THEORY
THE MATH BEHIND SCI-ML

• Multi-layer perceptrons - 1950’s - the 
basis. 

• Universal Approximation Property - 
1990’s - the theory. 

• Differentiable programming - 2020’s - 
makes it all possible! (see next slide)

<latexit sha1_base64="rxbkHHQCg+0IDHbdMEXS8rNaJ48="></latexit>

Theorem 1 (Cybenko 1989). If � is any continuous sigmoidal function, then
finite sums

G(x) =
NX

j=1

↵j� (wj · x+ bj)

are dense in C(Id).

Theorem 2 (Pinkus 1999). Let mi 2 Zd, i = 1, . . . , s, and set m = maxi
��mi

�� .
Suppose that � 2 Cm(R), not polynomial. Then the space of single hidden layer
neural nets,

M(�) = span
�
�(w · x+ b) : w 2 Rd, b 2 R

 
,

is dense in Cm1,...,ms

(Rd)
.
= \s

i=1C
mi

(Rd).

15



“AUTOGRAD”
THE CODE BEHIND SCI-ML

• Differentiable programming - 2020’s 
- makes it all possible! 

• Based on: 

• Computational graphs 

• Chain-rule for differentiation

16



For any ODE/PDE

PINN

17
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PINN Example

18

Example: IBVP for Diffusion Equation

Compute u(x, t) : ⌦ ⇥ [0, T ] ! R such that

@u(x, t)

@t
� r · (�(x)ru(x, t)) = f(x, t) in ⌦ ⇥ (0,T),

(6)

u(x, t) = gD(x, t) on @⌦D ⇥ (0,T),

��(x)ru(x, t) · n = gR(x, t) on @⌦R ⇥ (0,T),

u(x, 0) = u0(x) for x 2 ⌦.

Note that �(x) is, in general, a tensor (matrix) with
elements �ij.

• Direct problem: given �, compute u.

• Inverse problem: given u, compute �.

SciML - PINN and co. 102

PINN for the Diffusion Equation
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Procedure 2.1 The PINN algorithm for solving di↵erential equations.

Step 1 Construct a neural network û(x;✓) with parameters ✓.
Step 2 Specify the two training sets Tf and Tb for the equation and boundary/initial

conditions.
Step 3 Specify a loss function by summing the weighted L2 norm of both the PDE

equation and boundary condition residuals.
Step 4 Train the neural network to find the best parameters ✓

⇤ by minimizing the
loss function L(✓; T ).

x

t

�

�

...

�

�

�

...

�

û

NN(x, t;✓)
@
@t

@2

@x2

@û
@t � �@2û

@x2

PDE(�)

I

@
@n

û(x, t) � gD(x, t)

@û
@n (x, t) � gR(u, x, t)

BC & IC

Loss ✓
⇤

Tf

Tb

Minimize

Fig. 1 Schematic of a PINN for solving the di↵usion equation @u
@t = � @2u

@x2 with mixed boundary

conditions (BC) u(x, t) = gD(x, t) on �D ⇢ @⌦ and @u
@n (x, t) = gR(u, x, t) on �R ⇢ @⌦. The

initial condition (IC) is treated as a special type of boundary condition. Tf and Tb denote
the two sets of residual points for the equation and BC/IC.

functions using AD, which is conveniently integrated in machine learning packages
such as TensorFlow [1] and PyTorch [43].

In the next step, we need to restrict the neural network û to satisfy the physics
imposed by the PDE and boundary conditions. In practice, we restrict û on some
scattered points (e.g., randomly distributed points, or clustered points in the domain
[37]), i.e., the training data T = {x1,x2, . . . ,x|T |} of size |T |. In addition, T comprises
two sets, Tf ⇢ ⌦ and Tb ⇢ @⌦, which are the points in the domain and on the
boundary, respectively. We refer to Tf and Tb as the sets of “residual points.”

To measure the discrepancy between the neural network û and the constraints,
we consider the loss function defined as the weighted summation of the L2 norm of
residuals for the equation and boundary conditions:

(2.2) L(✓; T ) = wfLf (✓; Tf ) + wbLb(✓; Tb),

where

Lf (✓; Tf ) =
1

|Tf |

X

x2Tf

����f

✓
x;

@û

@x1
, . . . ,

@û

@xd
;

@2û

@x1@x1
, . . . ,

@2û

@x1@xd
; . . . ;�

◆����
2

2

,

Lb(✓; Tb) =
1

|Tb|

X

x2Tb

kB(û,x)k22,
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[Credit: Lu, Karniadakis, SIAM Review, 2021]

• Use FCNN to approximate u at the selected points x,
with training data at residual points Tf and Tb

• Use AD to compute derivatives for the PDE and the
boundary/initial conditions

• Minimize the augmented, weighted loss function

SciML - PINN and co. 103



BLENDING
HOW IS SCIENTIFIC ML DONE?

3 possible paths: 

1. Physics-guided NNs 

2. Physics-informed NNs 

3. Physics-encoded NNs
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SciML - PINN - Blending 

NN input

NN output
Loss function

Optimization

[S. Cuomo, et al]

21



BLENDING
HOW IS SCIENTIFIC ML DONE?
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Examples & Applications
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Domains in biomedical sciences
• Epidemiology 

• Omics 

• Medicine  

• Drug design

24

• COVID, 

• Anthrax, 

• HIV, 

• Zika, 

• Smallpox, 

• Tuberculosis, 

• Pneumonia, 

• Ebola, 

• Dengue, 

• Polio, 

• Measles.



Epidemiology with Scientific machine learning

25

•  ML can be employed to study complex interactions between different biological systems, such as 
signaling pathways and metabolic networks, to advance our understanding of various biological 
phenomena and improve the diagnosis and treatment of diseases. These technologies have the 
potential to significantly impact biological research in a variety of areas, including infectious diseases 
and epidemiology. 

•  ML can be used to analyze large datasets, such as genomic data, to identify patterns and trends 
relevant to the understanding and treatment of infectious diseases 

• ML can be employed to predict the likelihood of certain outcomes, such as the spread of a disease, 
based on historical data and by analyzing datasets generated by epidemiological studies. This can aid 
epidemiologists in preventing or mitigating outbreaks of infectious diseases, such as influenza and HIV. 

•  AI-based DTs can also be utilized to build predictive models that help researchers understand the 
relationships between different variables, such as gene expression and disease risk, interactions between 
pathogens and host organisms at the molecular level, and complex molecular interactions within 
biomolecules. 

• 



Other Scientific Domains
• Fluid dynamics, flow problems 

• Oceanography  

• Meteorology 

• Geophysical flows 

• Aerodynamics 

• Solid mechanics  

• Material science
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USE-CASES
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PATTERN MATCHING
DISEASE DIAGNOSIS

* ML algorithms, such as support vector 
machines (SVM) and random forests 
(RF), are trained on medical imaging 
data, such as X-rays or MRIs, to identify 
patterns associated with specific 
diseases.  

* For example, a SVM model could be 
trained on a dataset of mammogram 
images labeled as "normal" or 
"cancerous" to create a computer-aided 
detection system for breast cancer. 

* CNN’s have exceptional pattern-
recognition capabilities.
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GRAPHS AND PROPERTIES
DRUG DISCOVERY

* ML is used to analyze large datasets of 
chemical compounds and their properties 
to predict which ones are likely to make 
effective drugs.  

* For example, a deep learning model called 
a graph convolutional network (GCN) can 
be used to learn the structural features of 
molecules and predict their biological 
activity. 

* CANDLE project solves large-scale machine 
learning problems for three cancer-related 
pilot applications: the drug response 
problem, RAS pathway problem, and 
treatment strategy problem (disease-drug) .
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LETS GET PERSONAL
PERSONALIZED MEDECINE

* Machine learning algorithms used to 
analyze patients' genetic data and 
other health information to develop 
personalized treatment plans.  

* For example, a decision tree model 
could be trained on a dataset of 
patients with similar characteristics to 
predict which medication will be most 
effective for a given patient. 

* Moving towards a Digital Twin…

Digital Twin of a Cancer Patient and Tumor
This example of a digital twin demonstrates the dynamic bidirectional interaction between the real world patient 
and digital twin to inform clinical decisions regarding interventions including treatments and clinical assessments, 
which in turn informs the digital twin.

The virtual representation comprised of models 
describing temporal and spatial characteristics 
of the patient and tumor with dynamic updates 
using data from the real world patient.

The patient and the tumor from which
data is gathered using various clinical
assessments to inform the digital twin.

Simulations of potential treatments 
can generate predictions of 
outcome and in turn can be 
optimized to determine the most 
favorable treatment options.

Utilizing the simulated predictions 
and related uncertainties, the
clinician and patient can make 
informed clinical-decisions around
treatment and also the clinical 
assessments, which affect the data
informing the digital twin.

As the patient and tumor are 
constantly evolving and the 
data collection can also change 
over time, VVUQ must occur 
continually for digital twins.

Uncertainty quantification 
needs to be addressed for all 
aspects of the digital twin, 
including the patient’s data, 
modeling and simulation, and 
decision making.

VVUQ
Verification, validation,
and uncertainty quantification

Simulations & predictions

Data are collected in many ways:
Clinical assessments

Imaging Lab tests

Biosensors Patient reported
outcomes

Clinical
assessments

Tissue specimens,
including genomics
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DIGITAL TWIN
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Human and digital
twin interaction

Models spanning a range of fidelities
and resolutions may be utilized and 
potentially integrated together.

As new observed data are acquired,
the data are assimilated and the models 
are calibrated, updated, and estimated.

Modeling

D
AT

A 
IN

TE
G

RA
TI

O
N

 / 
AS

SI
M

ILA
TIO

N

M O D E L I N G

SIM
U

LATIO
N

S

This information is from Foundational Research Gaps and Future Directions for 
Digital Twins available online at www.nationalacademies.org/digital-twins.
Copyright by the National Academy of Sciences. All rights reserved.30



ADMISSIONS AND READMISSIONS
HOSPITAL PLANNING

* ML models, such as logistic regression 
and artificial neural networks, can be 
used to analyze patients' electronic 
health records (EHR) to identify 
factors that increase the risk of 
readmission.  

* This information can then be used to 
develop interventions to reduce 
readmissions. 

* Time-series (LSTM) and queuing 
theory to model admissions fluxes.
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SciML for DTs

Conclusion

• Incorporating scientific knowledge 
(almost) always improves the 
performance of ML algorithms: 

• Restricts the space of ML models. 

• Stronger inductive bias. 

• Can alleviate ML flaws (poor 
generalisation, optimisation difficulties, 
lack of interpretability, large amounts of 
training data). 
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• Incorporating Machine Learning in the 
scientific workflow: 

• Enhances the performance (efficiency, 
accuracy, insights, noise). 

• Compensates for unknown/intractable 
physics. 

• Takes advantage of large reservoirs of 
untapped data. 



Thank You!
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Contact 

• mark.asch@u-picardie.fr    

• https://www.linkedin.com/in/mark-asch-8a257130/ 

• https://github.com/markasch 

• https://markasch.github.io/DT-tbx-v1/  
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