Les jumeaux numériques pour la santé et la recherche médicale

Un webinaire INSERM en partenariat avec l'Alliance internationale des Données de la Recheche, la RDA

RDA

Enregistrement du webinaire 

Webinaire les jumeaux numériques pour la santé et la recherche médicale

Présentations

Les jumeaux numériques pour la santé, synthèse

Inverse problems, Machine Learning and Digital Twins

Brève présentation du groupe de travail de la RDA « Immune Digital Twins » 

Présentation des travaux sur les jumeaux numériques à la RDA 

Building a Virtual Twin of the Rheumatic Joint

Jumeaux virtuels de patients pour une thérapie personnalisée par cellules CAR-T 

FICHIER PARTAGÉ

Dans le domaine de la santé et de la recherche médicale, les jumeaux numériques sont des représentations virtuelles d'entités physiques telles que des patients, des organes ou même des systèmes de santé entiers. Ces modèles numériques sont alimentés par des données en temps réel qui permettent des simulations et des prédictions améliorant la prise de décision et les soins aux patients en général.

Résumés

Les jumeaux numériques pour la santé, synthèse (Mark Asch)

In this general talk, we will discuss what a digital twin is, and how it can be used in biomedical research and practice. We will also.address the important place of large language models (LLMs) and point out several caveats related to their use. The subject of ethics must not be overlooked, and we will provide some pointers. 

Inverse problems, Machine Learning and Digital Twins (Mark Asch)

In this more technical talk, we will address the theoretical underpinnings of digital twins. Digital twins can be seen as solutions of inverse problems, of which data assimilation is a special case. Using the underlying theory of these two, we can formulate and solve digital twins much more rigorously. In particular, we can take into account uncertainties and provide probabilistic predictions. Some simple examples will be presented to illustrate this approach.

Jumeaux numériques des patients atteints de polyarthrite rhumatoïde afin de prédire la réponse au traitement

Short presentation of the Building Immune Digital Twins Research Data Alliance Working group “BIDT RDA WG”

The Building Immune Digital Twins (BIDT) Working Group is part of the Research Data Alliance (RDA), a global initiative committed to advancing open, cross-disciplinary data sharing and interoperability. BIDT unites experts in immunology, computational modelling, data science, clinical research, and ethics to drive the development of Immune Digital Twins (IDTs)—virtual models of the human immune system designed to support personalised medicine, vaccine innovation, and disease understanding. With over 100 members from 22 countries, the group forms an international, transdisciplinary network focused on translating IDTs from research to clinical application.

Our work addresses the scientific, technical, ethical, and societal challenges of building and deploying IDTs. Key objectives include:

  • Developing community standards for data formats, metadata, and model sharing
  • Ensuring interoperability across platforms, tools, and datasets
  • Advancing global collaboration through open science practices
  • Designing a long-term roadmap for sustainable IDT ecosystems

The BIDT WG has been awarded RDA TIGER support, which provides facilitation, communication, landscape analysis, and output services for EOSC-related research. In addition, we received the RDA Cascading Grant and RDA Experts’ Call Grant to develop a centralised digital portal, aimed at consolidating WG activities and enhancing the dissemination of outputs. In parallel, we are implementing FAIR principles and aligning with recommendations from other RDA groups to ensure coherence, reusability, and impact across the broader research data community.

 
RA Digital Twins for predicting response to treatment 

Understanding the complex interplay between immune, infiltrating, and resident cells in rheumatoid arthritis (RA) is essential for predicting treatment responses and advancing personalised medicine. Our group has developed the RA Atlas, a comprehensive resource of large-scale molecular and cellular interaction maps (Singh et al., 2020; Zerrouk et al., 2022), which we are expanding to include diverse immune and tissue-resident cell types. Building on this foundation, we are constructing Boolean models to identify stable disease states, benchmarked against omics data and prior knowledge (Aghamiri et al., 2020). Recent advances include the development of one of the largest multicellular Boolean models to date, representing over 1,000 biomolecules across RA synovial macrophages, fibroblasts, and T cells (Zerrouk et al., 2024a; Zerrouk et al., 2024b).

To capture the spatial and dynamic aspects of RA, we are developing hybrid agent-based models (ABMs), where Boolean models guide cellular decision-making. This approach was first applied in the context of the COVID-19 Disease Map project (Ostaszewski et al., 2020, 2021; Niarakis et al., 2024). Our prototypes for RA, implemented in NetLogo and PhysiCell, simulate the joint microenvironment (unpublished work). ABMs offer outputs comparable to spatial transcriptomics, enabling validation against experimental datasets and providing a powerful tool to study the progression of key RA symptoms over time.

Our ongoing work integrates publicly available transcriptomic datasets to distinguish responders from non-responders to anti-TNF and JAK inhibitor therapies (Miagoux et al., 2021; He et al., 2025). By combining mechanistic modeling, multiscale simulation, and clinical data, this work lays the groundwork for a rheumatoid arthritis digital twin, capable of generating in silico predictions for experimental and clinical testing.

Jumeaux virtuels de patients pour une thérapie personnalisée par cellules CAR-T 

The novel field of engineered adoptive cellular immunotherapy (eACI) is quickly evolving. To improve outcome and availability of eACI, a variety of factors need to be to be addressed, including safety concerns, treatment resistance, limited manufacturing capabilities, and high treatment cost.

Virtual patient twins (VTs) enable a paradigm shift away from a one-size-fits-all application of eACIs towards a personalized, risk-adapted decision support. VTs for eACI manufacturing are in their early stages, but a whole-body VT to support decision making throughout the entire patient journey is lacking. As eACIs are living drugs, VTs in eACIs deviate from conventional biomedical VTs because they require to model the medicinal product as a dynamic biological system of living cells. Furthermore, the patient’s and the medicinal product’s path through eACI involve different stakeholders in distributed locations, thus the need for ensuring interoperability of VT components is high.

With the example of multiple myeloma patients eligible for CAR T cell treatment, I will outline and discuss the essential components for personalized virtual twin models in eACI (Weirauch et al. https://www.nature.com/articles/s41746-025-01809-6).

Good books

CNRS, L’essor des jumeaux numériques face à leurs défis

Colloque Jumeaux numériques : vidéos et synthèse à télécharger

 

 

Chargement... Chargement...